Developing scenarios for CONCITO

We have contributed to developing scenarios for CONCITO, a major Danish green think tank. CONCITO has analyzed the scenarios in the report The Importance of Agriculture for Future Land Use (Jordbrugets Betydning for Fremtidens Arealanvendelse), published in May 2024.

The scenarios represent different visions of land use in Denmark. The scenarios consider major concerns regarding sustainability, climate neutrality, and natural resources. 

Consequently, the scenarios explore the potential of a substantial increase in plant-based food production and a corresponding livestock decrease. The impact of such measures on the economy and the well-being of the Danish population has also been explored. 

The set target for the scenarios is to keep contributing to global food production on the present scale. To keep up with global population growth, Denmark should thus increase food production by 50 pct. over the coming decades. The set target amounts to producing about 22 trillion kilojoules, feeding about 22 million people by 2050. 

Bio-Resources of Denmark 

We used the model for Denmark’s bioresources, DK-BioRes. Energy Modelling Lab developed this model for the Danish Energy Agency in 2021. We have updated and tailored the model to meet the needs of CONCITO. The model contains data on Denmark’s bioresources, i.e., agricultural land, forests, natural areas, and aquaculture. 

The model and the data sources used are available on GitHub

Based on the input on crop distribution, livestock, land distribution, and desired applied technologies that the model receives, it can analyze how biomass flows through a network of processes. The results include the final production, land use, and greenhouse gas emissions. 

Potential pathways 

The model can generate scenarios showing the pathway to a specific target. For the CONCITO scenarios, the set target is that the Danish agricultural sector keeps contributing to global food production on the present scale relative to the global population growth.

The scenarios generated show which kind and quantities of crops and livestock production could meet the target. They also show the land use needed. The non-edible bi-products such as straw are also included in the calculations of final material production. 

In general, the focus of CONCITO in transforming the food system is to ensure sufficient healthy food in the least space possible with the least greenhouse gas emissions and negative impact on nature, the environment, and animal welfare. 

During 2024, CONCITO is running the project Rethink Denmark with a special focus on land use.

Open-access model 

The DK-BioRes model was developed under the program of the Bioenergy Taskforce. The model is calibrated to use 2019 as the base year. The data used are from Statistics Denmark. For the CONCITO scenarios, data on calories for edible products have been added to the model. 

The DK-BioRes is built in Excel and is an open-access and open-source model. The model and the data sources used are available on GitHub

Energy Model Lab has also developed a new and updated version of the DK-BioRes model, tailored to meet requirements from the Climate Council. We handed the model over to the Climate Council in March 2024. 

Overview of the DK-BioRes model:


Documentation report

The documentation report on the scenarios, “The Danish Bio Ressource”, is available in Danish only.

Client: CONCITO 

Budget: DKK 160.000,00 

EML-team: Ida Græsted 

Duration: Spring 2024 

Hydrogen fuel cells in shipping

It’s necessary to ban the use of fossil fuels to complete the green transition in shipping. To put it short, this is the main finding of our research study: “Hydrogen fuel cells in shipping: A policy case study of Denmark, Norway, and Sweden”. The study resulted from a collaboration with colleagues in Iceland. It was published in the leading journal Marine Policy (May 2024).

The study aims to identify the policy instruments needed to accelerate the uptake of hydrogen fuel cells for the shipping industries in Denmark, Norway, and Sweden.

Hydrogen fuel cells are promising for reducing emissions from shipping. However, their adoption is limited by high costs, lack of regulations, and lack of infrastructure. This is why there is a need for policies that spur investments in hydrogen fuel cells.

The three policy packages

Together with our fellow researchers, we tested three policy packages with different degrees of ambition (low, medium, and high). Our findings indicated that the proposed taxes on CO2 emissions and fossil fuels can help drive the transition away from fossil fuels. Meanwhile, the complete transition requires a ban on the use of fossil fuels.

The three policy packages were formulated based on discussions during workshops with key stakeholders from Nordic Shipping. During the workshops, we also learned that the participants are paying high attention to a “chicken and egg” paradox: Without the demand for green hydrogen, no supply, and vice versa. This has not been reflected in previous studies.

Correspondingly, a coordinated regional approach and cross-sector and cross-industry collaboration are needed. Otherwise, we cannot overcome the paradox and help balance the supply and demand for Nordic shipping


Icon of modelling


We used the TIMES-NEU model, an economic model generator for energy systems, to evaluate the three different policy packages. EML has developed the TIMES-NEU model.

Icon of scenario analysis


Estimated total fuel consumption in PJ/year; CO2 emissions by fuel in thousand tons of CO2 emissions/year; revenue from the tax on fossil fuels in million Euros/year; ferry segment fuel consumption in PJ/year.


The main finding was that policies are needed to spur investments. Meanwhile, it’s necessary to ban fossil fuels to complete the green transition of shipping.

Other scenarios included in the study show estimated CAPEX and OPEX in million Euros/year, estimated CAPEX and OPEX for the ferry segment in million, and estimated CAPEX and OPEX of the mandate of ferries to use hydrogen in comparison to the policy packages in million Euros/year.

The research study is part of the HOPE Project: The authors of the article are:
Mauricio Latapí, Brynhildur DavidsdottirDavid Cook, Lara Johannsdottir, MBA, Ph.D., Andrea Marin Radoszynski, and Kenneth Karlsson.

We are grateful for the financial support towards the HOPE project provided by the following organizations: the Nordic Energy Research, the Norwegian Research Council, the Swedish Transport Administration, the Icelandic Centre for Research, Business Finland, the Danish Energy Agency, Stena Rederi AB, and PowerCell Sweden AB.

Supporting District Energy Decarbonization

Photo of Copenhill thermal power plant with visible smoke

Energy Modelling Lab has joined TEN21, a collaboration platform supporting district energy decarbonization. We are organized by the Swedish Environmental Research Institute (IVL) as a collaboration between experts across the district energy value chain. The name reflects our focus: Thermal Energy Networks for 21 Degrees of Indoor Comfort, TEN21.

Heating and cooling of buildings make up for a substantial part of energy consumption and total CO2 emissions. So far, only 20% of the heating and cooling provided to buildings in the European Union is produced by using green energy. In comparison, research has shown that 35% of the heating and cooling demand in the EU could be met by using waste heat, an asset with limited use today.

Advancing and supporting district energy decarbonization is therefore of great importance for reaching the goal of net-zero emissions.


The team of TEN21 has the experience, network, and expertise to deliver the services of

  • Committing local authorities and stakeholders
  • Provide a holistic analysis of local district energy systems and resources
  • Identify least-cost and emission solutions using the most feasible technologies
  • Design roadmaps and identify replicable and bankable investment projects (we identify what to invest in, how large the installation should be, when in time it should be realized, and when existing assets should be retired)
  • Develop models for business and finance


We tailor the energy system model TIMES to analyze city-level district energy systems. Using the model enables us to process all data on energy production, consumption, and resources as well as data on buildings, industries, transportation, land use, and other of the studied locations. Based on the analysis, we study different scenarios and identify the optimal solutions.

Duration: April 2021 – ongoing


PartnersSweedish Environmental Research InstituteResourceful FuturesEURAC ResearchNODA Intelligent SystemsREWARDHeat

Energy Modelling Lab ContactKenneth Karlsson and Ida Græsted Jensen

Ancillary services costs in Sweden

illustration of ancillary services

We have been assigned by the Danish company Hybrid Greentech to develop a long-term forecast of ancillary services costs in Sweden. The forecast spans until 2050. At present, the electrification drive is inevitably leading to a surge in power demand. Consequently, a fundamental reconfiguration of our energy infrastructure is taking place. It must incorporate both intermittent renewables, flexible electricity demand, and the provision of ancillary services. 

So far, ancillary services have often been the unsung heroes of the power sector as these essential support systems ensure grid reliability. To make the forecast, we integrated and updated previous investigations into power production and demand. 

Potential innovative technologies

We took into consideration the production of green hydrogen in the Nordics. The flexibility of hydrogen production in the Nordics could be an important factor in the ancillary services market since a reduction of this production would most likely result in wider use of battery technologies. 

Potential innovative technologies could also have a high impact on the market for ancillary services. For example, the increasing number of electric vehicles means a large increase in power consumption. This increase, if managed flexibly, could potentially contain a total battery capacity of 250 GWh with a charging capacity of 50 GW. Such a capacity could support all the balancing requirements in all of Sweden if the potential is fully utilized. 

Electricity prices 

A long-term forecast of electricity production, consumption, and prices in Sweden was part of the analysis. In general, from 2020 to 2030 Sweden is expected to be a net exporter of electricity and from 2035 and onwards to be a net importer. Concerning consumption, an increase of about 80% in consumption from industry from 2020 to 2050 is expected. 

According to modelling results, the present price difference between the two Northern and the two Southern regions will decrease over time. 

Icon of modelling


We based our forecast of ancillary services costs on a qualitative assessment of research projects made by EML, assessing ancillary services markets in the TIMES models and other international research studies on the topic.

Icon of scenario analysis


We analyzed future power demand, the flexibility of electricity-demanding technologies in the power spot market, and the development of renewable intermittent technologies based on the integrated assessment model TIMES-NEU, a comprehensive energy system model covering the entire Northern European energy system. 

Icon of report/results


All results and calculations were presented in a comprehensive report to Hybrid Greentech. 

Duration: September 2023 

EML-Team: Mikkel Bosack Simonsen, Julius Lindberg Steensberg,  Kenneth Karlsson and Ida Græsted Jensen

Client: Hybrid Greentech 

Reference: Anton Osadchi


Early Action on Energy Efficiency

Energy Modelling Lab has contributed to the background study “The Value of Early Action on Energy Efficiency”. The study is focusing on buildings and industries. We identified key energy efficiency messages that we presented at the IEA Energy Efficiency Conference 2022 (see full presentation below). The conference took place in the Danish city of Sonderborg.

In collaboration with our partners, we examined the importance of early action on energy efficiency. We considered the costs of delayed progress. Furthermore, we looked into the benefits of achieving energy efficiency milestones on the way to reaching net zero emissions by 2050. The study was contracted by the International Energy Agency and financed by Danfoss.

Key findings on early action

Early action matters. A low energy efficiency pathway would increase final energy consumption by 39%. CO2 emissions increase by 16% if action is delayed by 10 years.

Energy efficiency is the most effective measure to quickly improve energy security and lower electricity prices.

Reduced air pollution in a global net zero emissions scenario can reduce the cost of global health impacts by almost €500 bn in 2030.

Water heaters provide the biggest shifting potential and thereby CO2 emission reductions. Due to high savings and load-shifting potential, water heaters should be one of the first products to be digitized.

In process industries maintenance and simple upgrade of process plants can save 5 to 10% with very short payback time.

The use of electromagnetic sources for process heat is in an early stage but holds promising potential for saving energy with a factor of 10 or more.

We used the IEA’s Net Zero Emissions by 2050 Scenario as a central focus and reference case for the analysis. Correspondingly, we focused on the implications and impacts of action within this decade, in all major energy-using regions globally.

Icon of scenario analysis

Scenario analyses

We analyzed scenarios of low energy efficiency and high energy efficiency and estimated the accumulated final energy consumption, CO2 emissions, and air pollution.

Icon of report/results


We presented the key findings at the International Energy Agency (IEA) Energy Efficiency Conference 2022 in the Danish city of Sønderborg.

Duration: January-April 2022

Client: International Energy Agency (IEA) and Danfoss

Budget: DKK 596,000

Partners: Energiforsk, Viegand Maagøe

Reference: Markus Wråke, CEO, Energiforsk

EML team: Kenneth Karlsson and Ida Græsted Jensen

Best locations of PtX plants

Iconic portray of PtX
Iconic portray of PtX

What could be the best locations for PtX plants in the Nordics? The answer to this question is one of the expected outcomes of the PtX Sector Coupling and LCA project. Energy Modelling Lab is collaborating with 13 partners. We are bringing our expertise in scenario analysis and advanced modelling to the project.

The PtX Sector Coupling and LCA project is part of the MissionGreenFuels partnership launched by the Danish Innovation Fund. The purpose of the project is twofold. The partners are working together on further developing existing energy systems and Life Cycle Assessment tools, methodologies, and models. The expected result is to create better ways to determine optimal ways of integrating PtX into the green transition.

Correspondingly, the partners are collaborating on using these models for assessments when it comes to defining the optimal locations of new PtX plants. This includes taking into consideration multiple factors such as grid capabilities, market forecasts, biomass, and carbon availability. Sector coupling and co-optimization of gas, electricity, hydrogen, and district heating are included as well. The models can generate different scenarios to be analyzed.

Our expertise

Energy Modelling Lab brings our expertise in using advanced mathematical models and modelling frameworks to the project, especially the use of the TIMES-NEU tool and model. Our assignment is to focus on describing sector coupling and potential synergies from the modelled scenarios. By analyzing the scenarios, we will clarify the optimal locations of PtX plants in Nordic countries in terms of cost-effectiveness.

Icon of modelling


Developing and updating the TIMES-NEU model.

Icon of scenario analysis

Scenario analyses

Analyze modelled scenarios to describe sector coupling and potential synergies.

Icon of report/results


A portfolio of projects where cross-fertilization across the individual projects is a priority to secure knowledge sharing, learning, and development.

Mission and vision

The vision of the MissionGreenFuels partnership is to contribute substantially to the decarbonization of the transport, aviation, and shipping sectors and to support Danish research, innovation, growth, job creation, and export potential within the field of green fuels.

The MissionGreenFuels partnership is one of the four Innomissions launched by the Danish Innovation Fund. Innomission is funded by the Danish Innovation Fund by a 700 million DKK grant from the Danish government and funds from the NextGenerationEU program.

Duration: 2023-2024

Client: Danish Innovation Fund

Budget: DKK 180,000

Reference: Professor Marie Münster, Danish Technical University

Collaborators: DTU MAN, DTU Compute, Aalborg University PLAN, Southern Denmark University (SDU), Alexandra Institute, EA Energy Analysis, PlanEnergi, EMD Industry, Energinet, Danfoss, Grundfos, Vestas, CIP Fonden

EML team: Kenneth Karlsson


Analysis of future energy market

Mix of solar parks and wind parks to produce green hydrogen
Mix of green energy production from sun and wind used for producing hydrogen

Energy Modelling Lab has made an analysis of the future energy market in Northern Europe that will develop under the green transition. The analysis was an assignment from COWI. It has been used as a reference in the report Roadmap to a Future, Danish hydrogen infrastructure, published by the CIP Foundation in May 2023.

The analysis focuses on Denmark, Norway, Sweden, Germany, Poland, Holland, Belgium, and UK. It probes the potential future markets of energy and fuels including PtX fuels from now on and until 2050.

Based on data from the Danish Energy Agency, the Danish production of electricity is expected to increase by almost 900 % by 2050. The increase is primarily due to offshore wind parks. It’s assumed that the offshore wind parks will be established in connection with planned “energy islands”; two to three in the North Sea and one in the Baltic Sea. Also, there are plans to establish electrolysis facilities and we assume they will be established on the energy islands.

Domestic demand

Domestic electricity demand is expected to remain almost constant due to energy-saving measures. But the overall expected increase could be about sevenfold from now on and until 2050, due to the planned expansion of PtX facilities. The bulk of the potential electricity production would thus be used for the production of green hydrogen for export. Denmark could potentially produce one-third of the total green hydrogen produced in the area, that our analysis covers.

The demand for hydrogen in Northern Europe is estimated to grow dramatically. According to the prognosis in the analysis, Holland, Belgium, and Germany will be the main purchasers. The estimated value of the potential, Danish green hydrogen export is 100 billion DKK pr. year.

Germany or Sweden

The prognosis is based on the assumption, that Germany’s capacity for hydrogen production will remain rather limited. This assumption relies on calculations showing that Danish offshore wind parks will produce slightly cheaper electricity than German facilities. Meanwhile, the likelihood that Germany will establish a large-scale production remains high.

An alternative scenario not included in the published analysis showed that Sweden could become the main purchaser of Danish-produced hydrogen by 2050. This is mainly due to estimates showing that production costs in Sweden are higher than in Denmark.

Energy Modelling Labs has updated the TIMES energy system model for the analysis. We developed it further to cover Northern Europe which resulted in developing the TIMES-NEU. The TIMES model is internationally recognized and developed by an IEA working group.

Icon of modelling


Energy Modelling Lab has updated the Open Nordic TIMES model (ON-TIMES) and developed it further to the Northern Europe TIMES model (TIMES-NEU).

Icon of scenario analysis


Energy Modelling Lab has probed on the future energy market that will develop under the Green Deal on climate neutrality by 2050.

Icon of report/results


Results and scenarios are collected in the report mentioned above.

Duration: 2022-2023

EML Team: Kenneth Karlsson, Ida Græsted Jensen and Andrea Marin Radoszynski

Client: COWI

Budget: DKK 450,00

Reference: Claus C. Rebien, Vice President, Cowi

Collaborators: Brinckmann


Report: Baggrundsnotat – Analyse af efterspørgsel efter PtX produkter

Local dialogue on green transition

Energy Modelling Lab is supporting an informed local dialogue on green transition, presenting charts on future demand, feasibility of new solar panel facilities and wind farms and suggestions of how to meet the increase demand.
Energy Modelling Lab is supporting an informed local dialogue on green transition, presenting charts on future demand, feasibility of new solar panel facilities and wind farms and suggestions of how to meet the increase demand.

The demand for green electricity is set to increase sharply in the coming decades. To meet the daily needs of the citizens as well as the industries, production capacity will have to rise accordingly. But which solutions are suitable and feasible on the municipal level? During 2023, Energy Modelling Lab is participating in a series of meetings to support local dialogue on green transition.

The meetings are organized by the Danish Board of Technology. Both citizens, representatives from the local industries, and decision-makers are participating. In many places, heads of the local industries and businesses are very keen on being at the forefront of the green transition. Also, experience shows that many citizens are knowledgeable and willing to engage. Dialogue can increase the support for the changes that the green transition entails.

Planning for PtX facility

During meetings in Vordingborg Municipality, we presented charts explaining the estimated increase in the demand for green electricity. Due to the planned installation of a PtX facility on the harbor, the demand is expected to rise by more than six times by 2050.

We showed that this demand could be met by a mix of new solar power facilities, wind farms, and other green energy sources. A number of on-shore and off-shore wind farms are currently being planned. If all of them are installed, they could meet even a 12-fold rise in demand. It is expected that access to green energy will attract new industrial facilities on the harbor.

In the Municipality of Kalundborg, we also presented charts explaining the land use needed to produce 1 million MWh by different kinds of green energy production facilities. The areas needed are presented in comparison to the total area of Kalundborg:

Chart explaining the land-use needed to produce 1 MWh by different kinds of green energy production facilities. The areas needed are presented in comparison to the total area of Kalundborg

We also showed the estimated energy generated, if solar panels were installed on the roofs of all buildings larger than 500 m2: It would amount to 200.000 MWh or enough to meet 20% of the estimated demand in 2030.

A common obstacle to the installation of solar power facilities and wind farms is the lack of support by local landowners and future neighbors. Insights into the actual land use needed can help set realistic goals when planning for future energy facilities.

Project: ”Fremtidens Grønne Energi og Borgerne” (“Future Green Energy and the Citizens”)

Duration: 2023

ClientThe Danish Board of Technology

Budget: DKK 100,000

Reference: Niels-Kristian Tjelle Holm,

EML Team: Ida Græsted Jensen and Kenneth Karlsson

Fremtidens grønne energi i Vordingborg

Udsigt over Vordingborg, hvor Energy Modelling Lab har afholdt dialog med borgerne om fremtidens grønne energiforsyning
Udsigt over Vordingborg, hvor Energy Modelling Lab har afholdt grøn dialog om fremtidens energiforsyning

I Vordingborg forventes efterspørgslen på grøn strøm at stige i de kommende år. Det drejer sig dels om grøn strøm til at dække det almindelige forbrug til husholdninger, transport og erhverv, dels til det planlagte PtX-anlæg på erhvervshavnen. Hvor skal strømmen komme fra? Energy Modelling Lab har deltaget i et borgermøde om fremtidens grønne energi i Vordingborg, organiseret af Teknologirådet.

Hvad det almindelige forbrug angår, kan efterspørgslen gå hen og stige med 45% frem til 2050. For PtX-anlæggets vedkommende, så drejer det sig om mere end en seks-dobling frem til 2050. På to møder har vi præsenteret forskellige muligheder for at producere tilstrækkelig med grøn strøm.

Det har givet de fremmødte Vordingborg-borgere et godt grundlag for en dialog om grøn energi. En række fremtrædende, lokale erhvervsledere er på forkant med den grønne omstilling, og mange borgere er både engageret og vidende. Erfaringen viser, at dialog kan bane vejen for øget opbakning til de forandringer, omstillingen til grøn energi indebærer.

Vordingborg Kommunes Klima- og teknikudvalg forventer at vedtage en strategiske energiplan i løbet af efteråret 2023.

Sol og vind

Beregninger viser, at de allerede planlagte solcelle- og landvindsanlæg i Kommunen kan dække efterspørgslen til det almindelige forbrug til husholdninger, transport og erhverv. Det er også muligt at forsyne PtX-anlægget med energi fra havvind, som man kan se på nedenstående diagrammer. Der er indsendt en række ansøgninger til Energistyrelsen om at opføre havvind-projekter i områder omkring Vordingborg Kommune. Hvis anlæggene bliver opført, kan de forsyne PtX-anlægget.

Grøn energi dialog med borgerne i Vordingborg Kommune. Beregninger viser, at der kan produceres grøn strøm nok til både almindeligt forbrug og det nye PtX anlæg.

PtX-anlægget på erhvervshavnen på Masnedø skal producere CO2 neutralt brændstof til luftfarten. Det bliver opført af virksomheden Arcadia eFuels.

Projekt: ”Fremtidens Grønne Energi og Borgerne”

Tidsperiode: 2023

EML-Team: Ida Græsted Jensen and Kenneth Karlsson

Klient: Teknologirådet

Budget: DKK 100,000

Reference: Niels-Kristian Tjelle Holm,

Grøn dialog i Kalundborg

Energy Modelling Lab har deltaget i en grøn energi dialog med borgerne i Kalundborg Kommune. Efterspørgslen på grøn strøm forventes at blive flerdoblet frem til 2050. Men hvor skal den komme fra?
Energy Modelling Lab har deltaget i en grøn energi dialog med borgerne i Kalundborg Kommune. Efterspørgslen på grøn strøm vil flerdobles, men hvor skal den komme fra?

I Kalundborg Kommune forventes forbruget af grøn strøm at stige voldsomt i de kommende år. Der kan blive tale om mere end en fordobling frem til 2050. Hvor skal strømmen så komme fra? Energy Modelling Lab har deltaget i en grøn dialog i Kalundborg I Vordingborg forventes efterspørgslen på grøn strøm at stige i de kommende år. Det drejer sig dels om grøn strøm til at dække det almindelige forbrug til husholdninger, transport og erhverv, dels til det planlagte PtX-anlæg på erhvervshavnen. Hvor skal strømmen komme fra? Energy Modelling Lab har deltaget i en grøn dialog i Vordingborg på et borgermøde, organiseret af Teknologirådet.

Forbrug af arealer

Det er især de store industrivirksomheder, der får brug for store mængder grøn strøm. Det gælder blandt andre Gyproc, Novo Nordisk, Novozymes og Kalundborg Refinery. Der er mange spørgsmål at tage stilling til. Et af dem er, om Kalundborg Kommune skal gå efter at blive selvforsynende med grøn strøm eller satse på at få strøm udefra.

Et vigtigt grundvilkår er hvilke arealer, der kan benyttes. Grøn energiproduktion kræver forholdsvis store arealer. Energy Modelling Lab har udarbejdet et eksempel på, hvordan der kan produceres 1 million MWh om året i Kommunen. Kalundborg får muligvis brug for omkring 1,5 million MWh eller mere i 2050.

Vi præsenterede eksemplet på et borgermøde arrangeret af Teknologirådet. Vi viste blandt andet hvor mange hektar, de forskellige teknologier skal bruge for at producere 1 million MWh om året:

Diagram der viser arealforbruget til at producere grøn strøm med hhv. sol, havvind, landvind, træ, halm til energi og halm til biogas.

I eksemplet mixer vi, så 35 % af strømmen kommer fra havvind, 35 % fra landvind, 20 procent fra sol og de resterende 10 % fra træ og biogas. Der bliver der anvendt 9000 hektar i alt, heraf 1300 hektar til havvindmøller. Eksemplet indebærer, at der er produktion af grøn energi på omtrent 13 procent af Kalundborg Kommunes areal.

Præsentationen gav de fremmødte Kalundborg-borgere et godt grundlag for en dialog om grøn energi. En række fremtrædende, lokale erhvervsledere er på forkant med den grønne omstilling, og mange borgere er både engageret og vidende. Erfaringen viser, at dialog kan bane vejen for øget opbakning til de forandringer, omstillingen til grøn energi indebærer.

Projekt: ”Fremtidens Grønne Energi og Borgerne”

Tidsperiode: 2023

EML-Team: Ida Græsted Jensen and Kenneth Karlsson

Klient: Teknologirådet

Budget: DKK 100,000

Reference: Niels-Kristian Tjelle Holm,