Newsletter Winter 2024

View of Turin

The past year has been a very active and productive year as we show in our Newsletter Winter 2024. We have created the TIMES-KUWAIT model and further developed the TIMES-Vietnam, TIMES-Jordan, and TIMES-NEU models. The latter covers Northern Europe. We have also embarked several research projects. One concerns PtX, another modelling the AFOLU sector. A third project is focusing on supporting local authorities to speed up the green transition.

Inspired by community

We were pleased to attend the Semi-anual ETSAP meeting in Turin in November. Our consultant Till Ben Brahim made a presentation on the possibility for the Nordic countries, especially Denmark, to become a green hub for export of green hydrogen and electricity to Europe. He showed scenarios generated by the TIMES-NEU model that we have used to analyze future energy markets in the Nordics.

Furthermore, we had the opportunity to network and agree with colleagues from Italy, Belgium, and the Nordic countries to team up regularly and share results from our work.

View of Turin
Kuwait City skyline
Creating the TIMES-KUWAIT model

We have contributed to the first steps of strategic energy planning in Kuwait as consultants on the project Developing Kuwait’s Long-Term Climate Pathways. In the first place, we developed a database for energy and GHG emissions. Next, we created the TIMES-KUWAIT model and generated different scenarios including rapid expansion of the renewable fuel market and reduced exports.

The government of Kuwait has pledged to reach net-zero emissions in the oil and gas sector by 2050 and by 2060 for the whole country.

Best location of PtXplants

As part of MissionGreenFuels, EML is collaborating with 13 partners on the PtX Sector Coupling and Life Cycle Assessment Project. The expected result is to create better ways to determine optimal ways of integrating PtX into the green transition. To this end, we are developing and updating the TIMES-NEU model.

Iconic portray of PtX

Please find the Newsletter below.

Hydrogen fuel cells in shipping

It’s necessary to ban the use of fossil fuels to complete the green transition in shipping. To put it short, this is the main finding of our research study: “Hydrogen fuel cells in shipping: A policy case study of Denmark, Norway, and Sweden”. The study resulted from a collaboration with colleagues in Iceland. It was published in the leading journal Marine Policy (May 2024).

The study aims to identify the policy instruments needed to accelerate the uptake of hydrogen fuel cells for the shipping industries in Denmark, Norway, and Sweden.

Hydrogen fuel cells are promising for reducing emissions from shipping. However, their adoption is limited by high costs, lack of regulations, and lack of infrastructure. This is why there is a need for policies that spur investments in hydrogen fuel cells.

The three policy packages

Together with our fellow researchers, we tested three policy packages with different degrees of ambition (low, medium, and high). Our findings indicated that the proposed taxes on CO2 emissions and fossil fuels can help drive the transition away from fossil fuels. Meanwhile, the complete transition requires a ban on the use of fossil fuels.

The three policy packages were formulated based on discussions during workshops with key stakeholders from Nordic Shipping. During the workshops, we also learned that the participants are paying high attention to a “chicken and egg” paradox: Without the demand for green hydrogen, no supply, and vice versa. This has not been reflected in previous studies.

Correspondingly, a coordinated regional approach and cross-sector and cross-industry collaboration are needed. Otherwise, we cannot overcome the paradox and help balance the supply and demand for Nordic shipping

Modelling

Icon of modelling

MODEL

We used the TIMES-NEU model, an economic model generator for energy systems, to evaluate the three different policy packages. EML has developed the TIMES-NEU model.

Icon of scenario analysis

SCENARIOS

Estimated total fuel consumption in PJ/year; CO2 emissions by fuel in thousand tons of CO2 emissions/year; revenue from the tax on fossil fuels in million Euros/year; ferry segment fuel consumption in PJ/year.

RESULTS

The main finding was that policies are needed to spur investments. Meanwhile, it’s necessary to ban fossil fuels to complete the green transition of shipping.

Other scenarios included in the study show estimated CAPEX and OPEX in million Euros/year, estimated CAPEX and OPEX for the ferry segment in million, and estimated CAPEX and OPEX of the mandate of ferries to use hydrogen in comparison to the policy packages in million Euros/year.

The research study is part of the HOPE Project: The authors of the article are:
Mauricio Latapí, Brynhildur DavidsdottirDavid Cook, Lara Johannsdottir, MBA, Ph.D., Andrea Marin Radoszynski, and Kenneth Karlsson.

We are grateful for the financial support towards the HOPE project provided by the following organizations: the Nordic Energy Research, the Norwegian Research Council, the Swedish Transport Administration, the Icelandic Centre for Research, Business Finland, the Danish Energy Agency, Stena Rederi AB, and PowerCell Sweden AB.

Speeding up Nordic Green Transition

Windmills on Bornholm
Windmills on Bornholm

We will be collaborating with Danish, Swedish, Norwegian, and Finnish partners on a major research project entitled SpeedLocal. The aim is to speeding up the Nordic green transition. Together we will develop guidance tools for addressing the “not in my backyard” complexities and the challenges of integrating energy planning on the national level with implementation on the local level.

The research project is a transdisciplinary initiative. It engages experts in stakeholder engagement, policy analysis, landscape analysis, participatory processes, and energy system modelling. The final guidance tools will also reflect the results from three case studies: the Norwegian municipality of Trondelag, the Swedish municipality of Skaraborg, and the Danish municipality of Bornholm.

Emphasis on local values

In these places, the local authorities are in the process of implementing national energy policies. EML will focus on adapting the TIMES-Nordic energy system model to work on municipality levels. Also, we will work on the case study of Bornholm. Working closely together with Bornholm municipality, we will identify the barriers to green transition and strategies to overcome them.

An important dimension of the project is the emphasis on the values of local nature and landscapes. An overarching aim is thus to find ways to integrate local insights and considerations into the broader national and Nordic energy planning analyses. By doing so, the legitimacy and policy relevance could improve.

Icon of modelling

Modelling

The TIMES-Nordic model will be adapted for local cases and integrate specific constraints

Icon of scenario analysis

Analysis

The analysis of the results will be translated into a Strategy Kit that contains instructions and guidance.

Icon of report/results

Results

The Strategy Kit can be utilized to formulate evidence-based policy recommendations.

Project: SpeedLocal

Duration: 2024-2026

Client: Nordic Energy Research

Programme: Nordic Grand Solutions Programme

Total budget: NOK 25 mio.

Project owner: Energiforsk AB

Reference: Lise Nielson, senior advisor, Nordic Energy Research

Partners: IVL, Institute for Energy Technology, LabLab, Luleå University of Technology,

VTT, Technical University of Denmark, Bornholm municipality, Skaraborg municipality, Vara municipality, Trondelag municipality

EML team:  Andrea Radoszynski, Ida Græsted Jensen and Till ben Brahim

Model: TIMES-Nordic

Agricultural and forestry sectors’ emissions

cows in a row

At present, the agricultural and forestry sectors’ emissions account for almost 20% of the total global emissions. Even so, these two sectors are largely neglected in the existing energy system modelling frameworks. There is simply no available data module to enable analyses. Meanwhile, we expect that our new research project will remedy this.

The research project is named Agriculture, Forestry, and Other Land Use Sector Modeling in TIMES (AFOLU). The result should be a demo model of a new data module. The demo model will be standardized and flexible. Thus, it will enable energy system modellers to properly model factors such as the forest capacity of CO2 uptake. Other important factors could be the consequences of replacing crops for biofuel production or optimizing irrigation systems for instance.

Energy Modelling Lab will carry out the research project together with four partners: E4SMA, the Institute for Energy Technology (IFE), University College Cork (UCC), and VITO. We expect to finalize the new module in 2025. We are receiving funding from The Energy Technology Systems Analysis Program, IEA-ETSAP.

Transformative step

Our project builds on ongoing work by Energy Modelling Lab and E4SMA to develop a demo version of the AFOLU module. The primary objective is to consolidate knowledge from various partners and create a standardized, flexible AFOLU module that can seamlessly integrate with any TIMES model.

The new module will enable the ETSAP community to conduct a more integrated, holistic scenario analysis. It will be possible to consider the dynamic interactions between energy systems and the AFOLU sector. Moreover, we see it as a transformative step toward enabling energy system modellers to address climate change impacts and designate pathways to sustainable, net-zero economies.

Duration: 2023-2025

Client: The Energy Technology Systems Analysis Program, IEA-ETSAP

Budget: Euro 68,000

Reference: Kathleen Vaillancourt

Partners: E4SMA, the Institute for Energy Technology (IFE), University College Cork (UCC), and VITO

EML team: Kenneth Karlsson and Ida Græsted Jensen

Model: TIMES

Ancillary services costs in Sweden

illustration of ancillary services

We have been assigned by the Danish company Hybrid Greentech to develop a long-term forecast of ancillary services costs in Sweden. The forecast spans until 2050. At present, the electrification drive is inevitably leading to a surge in power demand. Consequently, a fundamental reconfiguration of our energy infrastructure is taking place. It must incorporate both intermittent renewables, flexible electricity demand, and the provision of ancillary services. 

So far, ancillary services have often been the unsung heroes of the power sector as these essential support systems ensure grid reliability. To make the forecast, we integrated and updated previous investigations into power production and demand. 

Potential innovative technologies

We took into consideration the production of green hydrogen in the Nordics. The flexibility of hydrogen production in the Nordics could be an important factor in the ancillary services market since a reduction of this production would most likely result in wider use of battery technologies. 

Potential innovative technologies could also have a high impact on the market for ancillary services. For example, the increasing number of electric vehicles means a large increase in power consumption. This increase, if managed flexibly, could potentially contain a total battery capacity of 250 GWh with a charging capacity of 50 GW. Such a capacity could support all the balancing requirements in all of Sweden if the potential is fully utilized. 

Electricity prices 

A long-term forecast of electricity production, consumption, and prices in Sweden was part of the analysis. In general, from 2020 to 2030 Sweden is expected to be a net exporter of electricity and from 2035 and onwards to be a net importer. Concerning consumption, an increase of about 80% in consumption from industry from 2020 to 2050 is expected. 

According to modelling results, the present price difference between the two Northern and the two Southern regions will decrease over time. 

Icon of modelling

Modelling

We based our forecast of ancillary services costs on a qualitative assessment of research projects made by EML, assessing ancillary services markets in the TIMES models and other international research studies on the topic.

Icon of scenario analysis

Analysis

We analyzed future power demand, the flexibility of electricity-demanding technologies in the power spot market, and the development of renewable intermittent technologies based on the integrated assessment model TIMES-NEU, a comprehensive energy system model covering the entire Northern European energy system. 

Icon of report/results

Results 

All results and calculations were presented in a comprehensive report to Hybrid Greentech. 

Duration: September 2023 

EML-Team: Mikkel Bosack Simonsen, Julius Lindberg Steensberg,  Kenneth Karlsson and Ida Græsted Jensen

Client: Hybrid Greentech 

Reference: Anton Osadchi

Models: TIMES-NEU and TIMES-DK 

Best locations of PtX plants

Iconic portray of PtX
Iconic portray of PtX

What could be the best locations for PtX plants in the Nordics? The answer to this question is one of the expected outcomes of the PtX Sector Coupling and LCA project. Energy Modelling Lab is collaborating with 13 partners. We are bringing our expertise in scenario analysis and advanced modelling to the project.

The PtX Sector Coupling and LCA project is part of the MissionGreenFuels partnership launched by the Danish Innovation Fund. The purpose of the project is twofold. The partners are working together on further developing existing energy systems and Life Cycle Assessment tools, methodologies, and models. The expected result is to create better ways to determine optimal ways of integrating PtX into the green transition.

Correspondingly, the partners are collaborating on using these models for assessments when it comes to defining the optimal locations of new PtX plants. This includes taking into consideration multiple factors such as grid capabilities, market forecasts, biomass, and carbon availability. Sector coupling and co-optimization of gas, electricity, hydrogen, and district heating are included as well. The models can generate different scenarios to be analyzed.

Our expertise

Energy Modelling Lab brings our expertise in using advanced mathematical models and modelling frameworks to the project, especially the use of the TIMES-NEU tool and model. Our assignment is to focus on describing sector coupling and potential synergies from the modelled scenarios. By analyzing the scenarios, we will clarify the optimal locations of PtX plants in Nordic countries in terms of cost-effectiveness.

Icon of modelling

Modelling

Developing and updating the TIMES-NEU model.

Icon of scenario analysis

Scenario analyses

Analyze modelled scenarios to describe sector coupling and potential synergies.

Icon of report/results

Results

A portfolio of projects where cross-fertilization across the individual projects is a priority to secure knowledge sharing, learning, and development.

Mission and vision

The vision of the MissionGreenFuels partnership is to contribute substantially to the decarbonization of the transport, aviation, and shipping sectors and to support Danish research, innovation, growth, job creation, and export potential within the field of green fuels.

The MissionGreenFuels partnership is one of the four Innomissions that has been launched by the Danish Innovation Fund. Innomission is funded by the Danish Innovation Fund by a 700 million DKK grant from the Danish government and funds from the NextGenerationEU program.

Duration: 2023-2024

Client: Danish Innovation Fund

Budget: DKK 180,000

Reference: Professor Marie Münster, Danish Technical University

Collaborators: DTU MAN, DTU Compute, Aalborg University PLAN, Southern Denmark University (SDU), Alexandra Institute, EA Energy Analysis, PlanEnergi, EMD Industry, Energinet, Danfoss, Grundfos, Vestas, CIP Fonden

EML team: Kenneth Karlsson

Model: TIMES-NEU

Analysis of future energy market

Mix of solar parks and wind parks to produce green hydrogen
Mix of green energy production from sun and wind used for producing hydrogen

Energy Modelling Lab has made an analysis of the future energy market in Northern Europe that will develop under the green transition. The analysis was an assignment from COWI. It has been used as a reference in the report Roadmap to a Future, Danish hydrogen infrastructure, published by the CIP Foundation in May 2023.

The analysis focuses on Denmark, Norway, Sweden, Germany, Poland, Holland, Belgium, and UK. It probes the potential future markets of energy and fuels including PtX fuels from now on and until 2050.

Based on data from the Danish Energy Agency, the Danish production of electricity is expected to increase by almost 900 % by 2050. The increase is primarily due to offshore wind parks. It’s assumed that the offshore wind parks will be established in connection with planned “energy islands”; two to three in the North Sea and one in the Baltic Sea. Also, there are plans to establish electrolysis facilities and we assume they will be established on the energy islands.

Domestic demand

Domestic electricity demand is expected to remain almost constant due to energy-saving measures. But the overall expected increase could be about sevenfold from now on and until 2050, due to the planned expansion of PtX facilities. The bulk of the potential electricity production would thus be used for the production of green hydrogen for export. Denmark could potentially produce one-third of the total green hydrogen produced in the area, that our analysis covers.

The demand for hydrogen in Northern Europe is estimated to grow dramatically. According to the prognosis in the analysis, Holland, Belgium, and Germany will be the main purchasers. The estimated value of the potential, Danish green hydrogen export is 100 billion DKK pr. year.

Germany or Sweden

The prognosis is based on the assumption, that Germany’s capacity for hydrogen production will remain rather limited. This assumption relies on calculations showing that Danish offshore wind parks will produce slightly cheaper electricity than German facilities. Meanwhile, the likelihood that Germany will establish a large-scale production remains high.

An alternative scenario not included in the published analysis showed that Sweden could become the main purchaser of Danish-produced hydrogen by 2050. This is mainly due to estimates showing that production costs in Sweden are higher than in Denmark.

Energy Modelling Labs has updated the TIMES energy system model for the analysis. We developed it further to cover Northern Europe which resulted in developing the TIMES-NEU. The TIMES model is internationally recognized and developed by an IEA working group.

Icon of modelling

MODELLING

Energy Modelling Lab has updated the Open Nordic TIMES model (ON-TIMES) and developed it further to the Northern Europe TIMES model (TIMES-NEU).

Icon of scenario analysis

SCENARIO ANALYSIS

Energy Modelling Lab has probed on the future energy market that will develop under the Green Deal on climate neutrality by 2050.

Icon of report/results

RESULTS

Results and scenarios are collected in the report mentioned above.

Duration: 2022-2023

EML Team: Kenneth Karlsson, Ida Græsted Jensen and Andrea Marin Radoszynski

Client: COWI

Budget: DKK 450,00

Reference: Claus C. Rebien, Vice President, Cowi

Collaborators: Brinckmann

Model: TIMES-NEU

Report: Baggrundsnotat – Analyse af efterspørgsel efter PtX produkter

Viet Nam to reach net-zero emissions

Viet Nam is making headways in planning for the energy sector and is heading to reach net-zero emissions in 2050. Viet Nam Energy Outlook Report 2021  examined possible pathways for the development of the energy sector, and it featured a trajectory to reach this target for the first time.

One major finding was that a sustainable energy system will enable self-sufficiency. Another is that wind and solar energy are cheaper long-term solutions than coal and gas. At present, coal is the leading source of power.

Energy Modelling Lab is developing the scenarios that will be used in a new energy-system model for the Energy Outlook Report 2023. The model makes it possible for decision-makers and energy and power planners to identify the most cost-effective and feasible pathways to achieve a sustainable green transition.

Building DK-BioRes

MODELLING

The first step is to meet with our Vietnamese partners and agree on the questions to address, relevant analyses to undertake, and scenarios to design.

Energy Modelling Lab then redesigns and updates the modelling framework. We strengthen the representation of new decarbonization technologies and integrate relevant constraints.

SCENARIO ANALYSIS

The core scenarios focus on the realization of the net-zero target. They allow for a comprehensive investigation of optimal solutions. The results are then reflected in recommendations for policymaking.

The process fosters a wide consensus and understanding of Viet Nam’s energy challenges and opportunities in the mid-to long term.

REPORT

The Viet Nam Energy Outlook Report 2023 identifies the cost-optimized solutions that support Viet Nam’s energy system to become sustainable.

The Report allows for decision-makers to explore the system-wide implications of fulfilling targets by 2050. It also shows how Viet Nam can contribute to fulfilling the Paris Agreement on climate change.


Duration: March- December 2023

EML Team: Kenneth Karlsson, Ida Græsted Jensen &Till ben Brahim

Client: Danish Energy Agency 

Total budget: DKK 572.288

Reference: Giada Venturini, Danish Energy Agency

Collaborators: Electricity and Renewable Energy Authority (EREA, Vietnam), Hanoi University of Science and Technology, and E4SMA

Model: TIMES-VNM

Enhancing energy planning in Viet Nam

Energy Modelling Lab is enhancing energy planning in Viet Nam

Viet Nam is a regional manufactural hub and one of the most dynamic countries in East Asia, with the GDP annual growth rate averaging 6.2 per cent from 2000 until 2023. According to the analysis in the Viet Nam Energy Outlook Report 2021, electricity consumption will more than double in 2050 compared to 2020.

Viet Nam has pledged to reach the target of net-zero emissions by 2050. This means that the power system must meet more than 70 per cent of the total final energy demand with renewable energy-based electricity.

Energy Modelling Lab supports the endeavours to enhance energy planning in Viet Nam. We assist the Vietnamese authorities by building up their planning capacities concerning scenario-based, long-term modelling of the Vietnamese energy system. To this end, we are integrating an updated technology catalogue in the present energy system model and have included electricity storage solutions, P2X, nuclear technologies, optimal use of biomass, and carbon capture and storage.

Building DK-BioRes

MODELLING

Energy Modelling Lab updates the technology catalogue that is integrated into the present energy system model.

The catalogue includes decarbonisation technologies that are not yet being used and describes costs and relevant technical parameters.

ANALYSIS

The catalogue contributes to fostering data-driven discussions and understanding of the potential of decarbonization technologies.

The expected outcome of this process is a broader consensus on the potential.

RESULTS

The results will be integrated into the existing energy system model and can create first insights into cost-optimal applications of these technologies.

The results will contribute to making the Viet Nam Energy Outlook Report 2023 more comprehensive and enable decision-making on investments.


Duration: November 2022 – August 2023

EML Team: Kenneth Karlsson, Ida Græsted Jensen &Till ben Brahim

Client: UNOPS

Budget: DKK 93.438

Reference: Maurizio Gargiulo, Director of E4SMA

Collaborators: Electricity and Renewable Energy Authority (EREA, Vietnam), Danish Energy Agency (DEA) and E4SMA

Model: TIMES-VNM

Net-zero emissions in Kuwait

Kuwait City skyline
Energy Modelling Lab helps reaching net-zero emissions in Kuwait

Kuwait is becoming one of the hottest countries on the planet and faces profound social and ecological challenges from continued global warming and the transition from fossil fuels. The government has pledged to reach net-zero emissions in the oil and gas sector by 2050 and by 2060 for the whole country.

At present, oil accounts for 90 % of the national revenue and more than half of GDP, and renewable energy for less than 1 % of demand. Kuwait thus needs clever and comprehensive solutions. With abundant wind and solar resources, the potential is at hand.

Energy Modelling Lab supports steps to reach net-zero emissions in Kuwait by 2060. We are developing an energy systems model, the TIMES-KUWIAT, that allows us to identify the least-cost and most feasible green energy systems. Based on these results we can designate pathways to integrate the new solutions across five key sectors: Energy, Industry, Agriculture, land use, and Waste.

Building DK-BioRes

MODELLING

Energy Modelling Lab develops a database for energy and GHG emissions, builds consensus on ambitions, and shortlists decarbonization options.

We develop the TIMES-KUWAIT model featuring different scenarios including rapid expansion of the renewable fuel market and reduced exports.

SCENARIO ANALYSIS

Analyzing the different scenarios allows for informed decision-making on the optimal solutions integrated across sectors.

Socioeconomic and environmental impacts and co-benefits such as improved health are identified and considered.

RESULTS

Results are presented in a website format with open access and all key results are shared in Excel sheets.

Users can move between scenarios and study results like emissions and energy consumption by sector and costs.


Duration: August 2022 – June 2024

External experts from EML Mikkel Bosack Simonsen and Ida Græsted Jensen

Client: UNEP

Total budget: USD 64.920

Reference: Sarah Carmen Fiedler, associate expert, UNEP

Collaborators: SDA Sustainable Development Advisors

Model: TIMES