Denmark’s Climate Targets 2050

We have supported the Report, Denmark’s Climate Targets 2050, published by the Danish Climate Council in August 2024. The Report contains an analysis of four scenarios for the future of Denmark. The scenarios have been generated using the DK-BioRes model as one of the tools.

Energy Modelling Lab developed the DK-BioRes model in 2021 as a project under the Danish Energy Agency. We have updated the model and integrated new technologies. We have also built up the capacity of the experts of the Danish Climate Council to use the model.

Climate target 110 percent reduction

The analysis of the Report shows that there are different pathways towards reaching a climate target of 110 percent reduction of climate gasses. The analysis designates two strategies for implementing the transition. The designated strategies are intended to illustrate the possibilities and dilemmas of the transition. Subsequently, the analysis highlights the magnitude of the task of the green transition.

The DK-BioRes model enables scenario analyses, which show the impacts of various options for the production of biological resources and mitigation measures of greenhouse gas emissions from land, forests, and agriculture in Denmark. The model calculates in physical units, e.g. tonnes and PJ, while financial conditions are not included. The DK-BioRes model has a representation of Denmark’s entire area divided into agriculture, forest, wetlands, built-up areas, etc.

The report: Danmarks Klimamål 2050

Documentation Report 1 about scenarios, models, and assumptions

Documentation Report 2 about the DK-BioRes model

EML Project Supporting the Danish Climate Council

EML-team: Ida Græsted Jensen and Kenneth Karlsson

Denmark’s Climate Targets 2050

We have supported the Report, Denmark’s Climate Targets 2050, published by the Danish Climate Council in August 2024. The Report contains an analysis of four scenarios for the future of Denmark. The scenarios have been generated using the DK-BioRes model as one of the tools.

Energy Modelling Lab developed the DK-BioRes model in 2021 as a project under the Danish Energy Agency. We have updated the model and integrated new technologies. We have also built up the capacity of the experts of the Danish Climate Council to use the model.

The report: Danmarks Klimamål 2050

Documentation Report 1 about scenarios, models, and assumptions

Documentation Report 2 about the DK-BioRes model

EML Project Supporting the Danish Climate Council

EML-team: Ida Græsted Jensen and Kenneth Karlsson

The Power Decision Game

Titel of article on Power Decision Game

We have contributed to the collective research article entitled Exploring European decarbonisation pathways in the Power Decisions Game. The article was published in the international journal Energy, Sustainability and Society.

The Power Decisions Game provides a first-of-its-kind open-source infrastructure. It allows non-modellers to explore the impact of key decisions and preferences on the design of the future European power system. Furthermore, it provides insights into the consequences of short-sighted decision-making. The game can be used to facilitate policy-science discussions.

The game is based on more than 1700 scenarios. The scenarios have been run through an open-source and accessible, yet technologically detailed, myopic energy system optimization model for the electricity supply in the EU27 + 3.

The game allows the user to take the role of a decision-maker and make decisions in 2020, 2030, and 2040 regarding the usage of CCS, biomass imports, cross-border electricity transmission, and the pace of emission reductions.

The user is then presented with the economic, social, and environmental impacts of these choices. These impacts are, for example, measured and illustrated in the development of accumulated CO2 emissions per capita, levelised cost of electricity, and investment need per citizen.

Exploring European decarbonisation pathways in the Power Decisions Game

Project: REEEM (Role of Technologies in an Energy-Efficient Economy – Model-based analysis of Policy Measures and transformation pathways to a Sustainable Energy System)

Donor: European Union’s Horizon 2020 research and innovation programme

Collaborators: Hauke T. J. Henke, Francesco Gardumi, Ólavur Ellefsen, Marita Lítlá, and Bo Lærke

EML Team: Kenneth Karlsson

Duration: 2016-2019

Viet Nam Energy Outlook Report 2023

Viet Nam Energy Outlook Report 2023 shows that the country is working steadfastly to reach net zero by 2050. Simultaneously, the country faces the challenge of a fast-growing economy and a huge increase in electricity demand.

One of the keys to this successful development is strategic energy planning. Subsequently, the Vietnamese government uses the TIMES-Vietnam energy systems model and the Balmorel-Vietnam for decision-making.

We have supported the development of the TIMES-Vietnam model for almost 10 years through our engagements in the Partnership Programme between Viet Nam and Denmark, headed by the Danish Energy Agency.

Regarding the Outlook Report, we have developed scenarios for the analyses. We have also assisted the Vietnamese authorities in building up their planning capacities. To this end, we have updated the technology catalog. The catalog has been integrated into the TIMES-VNM model. It includes technologies not yet being used in Viet Nam.

Some of the key takeaways of the Viet Nam Energy Outlook Report are

• The green energy transition is cost-efficient for Viet Nam
• A steady increase in renewable energy investments is required from today
• Energy efficiency is a cost-effective option to reach the net-zero target

Duration: March- December 2023

EML TeamKenneth KarlssonIda Græsted Jensen &Till ben Brahim

ClientDanish Energy Agency 

Total budget: DKK 572.288

Reference: Giada Venturini, Danish Energy Agency

Collaborators: Electricity and Renewable Energy Authority (EREA, Vietnam), Hanoi University of Science and Technology, and E4SMA

Model: TIMES-VNM

Planning the optimal energy island

Model image of an energy island

We have developed an innovative model enabling the planning of an optimal energy island. The model makes it possible to generate scenarios and explore how to plan for the maximum economic returns for investors and developers. By analyzing various scenarios we can assess how differing conditions might affect the island’s operations, capacity, investment, and profitability.

Correspondingly, the model can generate scenarios showing the optimal scale of production of various e-fuels such as hydrogen, ammonia, methanol, and kerosene. Likewise, we can probe the most cost-efficient solutions for the management of electricity transmission.

The model is the result of a master’s thesis that we have supervised. It’s developed using the TIMES modelling framework and diverges from the prevalent demand-driven approach by adopting a price-driven strategy.

North Sea Energy Island

As a case study, the master’s thesis explores the strategic development and optimization of a North Sea Energy Island. The Danish government is planning for several energy islands in the North Sea. The Energy Island project directly addresses the European Union’s imperative to boost energy security and diminish its dependence on
fossil fuel imports amidst evolving geopolitical and energy market dynamics.

The model employs an hourly resolution. It thus provides a detailed understanding of the island’s configuration and operations, enhancing the reliability of the results.

The developed model tool has proven reliable although some simplifications concerning the electricity market and transport operations were necessary. It can be integrated with other demand-driven studies to determine optimal operational strategies and future projections.

Results

The findings indicate that Germany and Denmark are the most viable markets for exporting the island’s electricity. However, producing hydrogen for export to the Netherlands and Belgium appears to be the most lucrative option, given the high industrial demand and pricing in these regions.

The study also notes that producing other e-fuels on the island would be economically feasible only under specific conditions with sufficiently high prices. These results suggest that the island’s most effective role may be as a hydrogen hub.

Furthermore, using an hourly resolution has proven instrumental in understanding storage operations on the island and achieving more dependable outcomes.

Icon of modelling

Modelling

We have developed a model of a North Sea energy island using the TIMES modelling framework.

Icon of scenario analysis

Scenarios

We have generated various scenarios and assessed how differing conditions might affect the island’s operations, capacity, investment, and profitability.

Icon of report/results

Publication

The research is part of a master’s thesis at Danish Technical University.

Institution: Danish Technical University, supervisor Kenneth Karlsson

MSc student: Francisco González Beltrán

EML-team:  Kenneth Karlsson, and Till ben Brahim

Duration: 2023-2024

Phasing out the Use of Biomass

The Danish District Heating Association has assigned us to analyze the impact of phasing out the use of biomass in district heating. We have explored three scenarios of phasing out, all by 2035. In the first scenario, a 50 percent reduction is implemented. In the second scenario, a 75 percent reduction is implemented. In the third scenario, the phasing out of the use of biomass is 100 percent complete.

The use of biomass is set to be replaced by heat pumps and electric boilers, fueled by electricity from solar and wind parks. Consequently, the electricity demand is set to increase. Simultaneously, the electricity production from the thermal plants is set to decrease. Therefore, the capacity of onshore wind and solar parks needs to increase correspondingly.

Our analysis focuses on answering three questions:

1. How big is the need for new capacities of heat pumps, electric boilers, and onshore wind and solar parks?

2. How big are the changes in yearly costs and what are the investment and sunk costs for the phase-out?

3. What will the phasing out mean for land use?

Cost-benefit

A key factor is the replacement of costly biomass with sun and wind. Also, the life expectancy of the technologies has an important impact on the results. Solar and wind parks have a life expectancy of 35 years while thermal plants have 25 years. Boilers and heat pumps have a life expectancy of 20 years.

Meanwhile, the electricity production of solar and wind parks is less efficient. Consequently, the capacity needs to be higher than the capacity of thermal plants. Yet, the operational costs of solar and wind parks, boilers, and heat pumps are significantly lower than those of thermal plants.

The land use differs considerably. Phasing out the use of biomass could lead to a reduction of more than 90 pct. Land prices thus have a considerable impact on the bottom line.

Client: Danish District Heating

EML Team: Ida Græsted Jensen, Julius Lindberg Steensberg

Duration: April-June, 2024

Budget: DKK 126,000

Modelling the Water-energy-food Nexus

photo of a sunflower field by small river

We are hosting and supervising PhD student Daniele Mosso for one year. Daniele Mosso is doing his PhD at Politecnico di Torino. He is focusing on developing tools to modelling the water-energy-food nexus. The objective is to answer the following question: To what extent can energy be produced without significantly harming natural resources and related sectors?

Daniele Mosso spent the initial period of his PhD examining the major factors affecting the sustainability of energy systems. He concluded that land use, or the consumption of natural resources, is a major issue.

Limitations of existing models

Meanwhile, the existing Energy System Optimization Models (ESOMs) have limitations concerning sustainability and environmental aspects. The limitations can be overcome in several ways. Based on his initial research, Daniele Mosso opted to develop a tool to represent the sectors of agriculture, forestry, and land use (AFOLU) in an ESOM. The tool should make it possible to account for land and water consumption and related emissions.

Subsequently, the research of Daniele Mosso is in line with a new research project Energy Modelling Lab launched recently. The aim is to develop a prototype module representing the AFOLU sector for the TIMES modelling framework. The TIMES model is an energy system optimization model.

Exploring a soft-linking methodology

Furthermore, Daniele Mosso plans to devote the last part of his PhD to exploring a soft-linking methodology. One possibility is direct coupling with an integrated assessment model (IAM) representing natural resources.

At Politecnico di Torino, Daniele Mosso is a member of the MAHTEP Group (Modeling of Advanced Heat Transfer and Energy Problems). It’s a research team established at the end of 2019.

Icon of modelling

Modelling

We will develop a prototype module representing the AFOLU sector for the TIMES modelling framework.

Icon of scenario analysis

Scenarios

We will test scenarios of the impacts of energy consumption of the AFOLU sector.

Icon of report/results

Publication

The research is part of a PhD to be finalized in 2026.

Institution: Politecnico di Torino, Professor Laura Savoldi

EML-team: Daniele Mosso, Ida Græsted Jensen

Duration: 2024-2025

Financing district heating projects

We have launched a research project on the challenges of financing district heating projects. The overall objective is the development of sustainable financial frameworks for key district heating market types. Our focus is analyzing fundamental structures within district heating finance. One major result will be identifying best practices.

The project will provide authorities, investors, and the scientific community with fundamental insight into sustainable finance’s role in district heating deployment. District heating is key to the green energy transition in the EU. Since the sector is set to grow so is the need for financing.

The research project is entitled “Financial Frameworks’ Impact on District Heating”. We are implementing it as a party to a four-country consortium (Belgium, Denmark, Germany, and Sweden).

Challenges to district heating

District heating is a cost-effective and sustainable technology. Nonetheless, financing challenges pose a serious impediment to new projects. District heating projects are typically large-scale and require significant upfront investment. Therefore, it’s a difficult task to secure financing, particularly from the private sector.

Mainstream financing mechanisms to attract private capital are usually ill-suited for district heating. Subsequently, the development of district heating has historically relied heavily on public financing, such as grants, loans, and guarantees. In particular, this is the case in countries with a strong tradition of public ownership and control of energy infrastructure.

Objectives

1. To understand and define district heating as an asset class. We will classify the various investment components into an asset class structure according to the standards in the investor community. Investors tend to hold portfolios of assets of varying character. Identifying the asset class of district heating allows investors to lower the threshold for investing in it.  

2. To establish a database of key financial characteristics.

3. To understand the impacts of financial frameworks on the deployment of district heating.

4. To provide recommendations on how investors in green energy can approach the district heating sector.

Donor:  IEA Technology Collaboration Programme on District Heating and Cooling 

Coordinator: Daniel Møller Sneum

Partners: Lund University and Halmstad University, Sweden, Stuttgart University of Applied Sciences, Germany, and Euroheat & Power, Belgium.

Lead: Energy Modelling Lab

Budget: USD 302,425

Duration: 2024-2026

Low Carbon Solutions for Azerbaijan

We are contributing to a project designating low-carbon solutions for Azerbaijan. The project result should be a Roadmap recommending relevant policies and technologies. The full title is “Low-Carbon Solutions in the Electric Power Sector of Azerbaijan Technical Assistance Project”.

Azerbaijan relies heavily on oil and gas, which has brought significant economic growth over the years. Oil, gas, and related petroleum products accounted for 91 percent of Azerbaijan’s total exports in 2022 and almost 48 percent of its GDP.  Likewise, in 2021, natural gas dominated the electricity generation mix (94 percent). It was followed by hydropower (4.6 percent), waste and biomass incineration (0.7 percent), and solar and wind (0.5 percent).

Meanwhile, there is a vast potential for solar and wind power that investors have already begun to develop.

TIMES-Azerbaijan

Energy Modelling Lab carries out part of the energy systems modelling work for the project. Subsequently, we are updating and tailoring the TIMES-Azerbaijan model we have developed for the EU Commission in 2021. We are using the model to create three scenarios:

  • A Business As Usual (BAU) scenario reflects current and planned policies concerning low carbon penetration.
  • One scenario assumes high economic growth and targets carbon neutrality by 2050.
  • One scenario assumes low economic growth and targets carbon neutrality by 2050.

Stakeholder engagement

We have also been assigned to design and take charge of stakeholder engagement, consultation, and communications. The aim is to foster an understanding of the modelling approaches. The key stakeholders should reach and maintain agreement on scenario assumptions, and we should obtain the necessary feedback. The overall objective is to ensure the full capacity of ownership of the key stakeholders. Additionally, the Roadmap should be credible, robust, and functional.


Energy Modelling Lab has been subcontracted for the project by Tetra Tech. The project is implemented within the Memorandum of Understanding between the Ministry of Energy of Azerbaijan and the European Bank for Reconstruction and Development EBRD on technical support related to the development of the electric power sector of the Republic of Azerbaijan.

Icon of modelling

Modelling

We are updating and tailoring the TIMES-Azerbaijan model using the TIMES energy systems modelling framework.

Icon of scenario analysis

Scenarios

We are creating a business as usual (BAU) scenario and two scenarios targeting net zero for the energy sector by 2050.

course on energy modelling

Stakeholder engagement

We are taking charge of designing the consultation and communications to ensure the full ownership of key stakeholders.

Client: Tetra Tech

Donor: European Bank of Reconstruction and Development (EBRD)

EML Team: Kenneth Karlsson, Till ben Brahim, Andrea Radoszynski, Pernille Bramming

Duration: 2024-25

Budget: EURO 52,400

The Danish Bioresource

Title of report using the DKBio-Res model

We have contributed to developing scenarios for CONCITO, a major Danish green think tank, and documented the work in the report “The Danish Bioresource”. CONCITO has analyzed the scenarios in the report The Importance of Agriculture for Future Land Use (Jordbrugets Betydning for Fremtidens Arealanvendelse), published in May 2024.

The scenarios represent different visions of land use in Denmark. The scenarios consider major concerns regarding sustainability, climate neutrality, and natural resources. 

The project is described in detail in the post Developing Scenarios for CONCITO.