Early Action on Energy Efficiency

Energy Modelling Lab has contributed to the background study “The Value of Early Action on Energy Efficiency”. The study is focusing on buildings and industries. We identified key energy efficiency messages that we presented at the IEA Energy Efficiency Conference 2022 (see full presentation below). The conference took place in the Danish city of Sonderborg.

In collaboration with our partners, we examined the importance of early action on energy efficiency. We considered the costs of delayed progress. Furthermore, we looked into the benefits of achieving energy efficiency milestones on the way to reaching net zero emissions by 2050. The study was contracted by the International Energy Agency and financed by Danfoss.

Key findings on early action

Early action matters. A low energy efficiency pathway would increase final energy consumption by 39%. CO2 emissions increase by 16% if action is delayed by 10 years.

Energy efficiency is the most effective measure to quickly improve energy security and lower electricity prices.

Reduced air pollution in a global net zero emissions scenario can reduce the cost of global health impacts by almost €500 bn in 2030.

Water heaters provide the biggest shifting potential and thereby CO2 emission reductions. Due to high savings and load-shifting potential, water heaters should be one of the first products to be digitized.

In process industries maintenance and simple upgrade of process plants can save 5 to 10% with very short payback time.

The use of electromagnetic sources for process heat is in an early stage but holds promising potential for saving energy with a factor of 10 or more.

We used the IEA’s Net Zero Emissions by 2050 Scenario as a central focus and reference case for the analysis. Correspondingly, we focused on the implications and impacts of action within this decade, in all major energy-using regions globally.

Icon of scenario analysis

Scenario analyses

We analyzed scenarios of low energy efficiency and high energy efficiency and estimated the accumulated final energy consumption, CO2 emissions, and air pollution.

Icon of report/results


We presented the key findings at the International Energy Agency (IEA) Energy Efficiency Conference 2022 in the Danish city of Sønderborg.

Duration: January-April 2022

Client: International Energy Agency (IEA) and Danfoss

Budget: DKK 596,000

Partners: Energiforsk, Viegand Maagøe

Reference: Markus Wråke, CEO, Energiforsk

EML team: Kenneth Karlsson and Ida Græsted Jensen

Best locations of PtX plants

Iconic portray of PtX
Iconic portray of PtX

What could be the best locations for PtX plants in the Nordics? The answer to this question is one of the expected outcomes of the PtX Sector Coupling and LCA project. Energy Modelling Lab is collaborating with 13 partners. We are bringing our expertise in scenario analysis and advanced modelling to the project.

The PtX Sector Coupling and LCA project is part of the MissionGreenFuels partnership launched by the Danish Innovation Fund. The purpose of the project is twofold. The partners are working together on further developing existing energy systems and Life Cycle Assessment tools, methodologies, and models. The expected result is to create better ways to determine optimal ways of integrating PtX into the green transition.

Correspondingly, the partners are collaborating on using these models for assessments when it comes to defining the optimal locations of new PtX plants. This includes taking into consideration multiple factors such as grid capabilities, market forecasts, biomass, and carbon availability. Sector coupling and co-optimization of gas, electricity, hydrogen, and district heating are included as well. The models can generate different scenarios to be analyzed.

Our expertise

Energy Modelling Lab brings our expertise in using advanced mathematical models and modelling frameworks to the project, especially the use of the TIMES-NEU tool and model. Our assignment is to focus on describing sector coupling and potential synergies from the modelled scenarios. By analyzing the scenarios, we will clarify the optimal locations of PtX plants in Nordic countries in terms of cost-effectiveness.

Icon of modelling


Developing and updating the TIMES-NEU model.

Icon of scenario analysis

Scenario analyses

Analyze modelled scenarios to describe sector coupling and potential synergies.

Icon of report/results


A portfolio of projects where cross-fertilization across the individual projects is a priority to secure knowledge sharing, learning, and development.

Mission and vision

The vision of the MissionGreenFuels partnership is to contribute substantially to the decarbonization of the transport, aviation, and shipping sectors and to support Danish research, innovation, growth, job creation, and export potential within the field of green fuels.

The MissionGreenFuels partnership is one of the four Innomissions that has been launched by the Danish Innovation Fund. Innomission is funded by the Danish Innovation Fund by a 700 million DKK grant from the Danish government and funds from the NextGenerationEU program.

Duration: 2023-2024

Client: Danish Innovation Fund

Budget: DKK 180,000

Reference: Professor Marie Münster, Danish Technical University

Collaborators: DTU MAN, DTU Compute, Aalborg University PLAN, Southern Denmark University (SDU), Alexandra Institute, EA Energy Analysis, PlanEnergi, EMD Industry, Energinet, Danfoss, Grundfos, Vestas, CIP Fonden

EML team: Kenneth Karlsson


Analysis of future energy market

Mix of solar parks and wind parks to produce green hydrogen
Mix of green energy production from sun and wind used for producing hydrogen

Energy Modelling Lab has made an analysis of the future energy market in Northern Europe that will develop under the green transition. The analysis was an assignment from COWI. It has been used as a reference in the report Roadmap to a Future, Danish hydrogen infrastructure, published by the CIP Foundation in May 2023.

The analysis focuses on Denmark, Norway, Sweden, Germany, Poland, Holland, Belgium, and UK. It probes the potential future markets of energy and fuels including PtX fuels from now on and until 2050.

Based on data from the Danish Energy Agency, the Danish production of electricity is expected to increase by almost 900 % by 2050. The increase is primarily due to offshore wind parks. It’s assumed that the offshore wind parks will be established in connection with planned “energy islands”; two to three in the North Sea and one in the Baltic Sea. Also, there are plans to establish electrolysis facilities and we assume they will be established on the energy islands.

Domestic demand

Domestic electricity demand is expected to remain almost constant due to energy-saving measures. But the overall expected increase could be about sevenfold from now on and until 2050, due to the planned expansion of PtX facilities. The bulk of the potential electricity production would thus be used for the production of green hydrogen for export. Denmark could potentially produce one-third of the total green hydrogen produced in the area, that our analysis covers.

The demand for hydrogen in Northern Europe is estimated to grow dramatically. According to the prognosis in the analysis, Holland, Belgium, and Germany will be the main purchasers. The estimated value of the potential, Danish green hydrogen export is 100 billion DKK pr. year.

Germany or Sweden

The prognosis is based on the assumption, that Germany’s capacity for hydrogen production will remain rather limited. This assumption relies on calculations showing that Danish offshore wind parks will produce slightly cheaper electricity than German facilities. Meanwhile, the likelihood that Germany will establish a large-scale production remains high.

An alternative scenario not included in the published analysis showed that Sweden could become the main purchaser of Danish-produced hydrogen by 2050. This is mainly due to estimates showing that production costs in Sweden are higher than in Denmark.

Energy Modelling Labs has updated the TIMES energy system model for the analysis. We developed it further to cover Northern Europe which resulted in developing the TIMES-NEU. The TIMES model is internationally recognized and developed by an IEA working group.

Icon of modelling


Energy Modelling Lab has updated the Open Nordic TIMES model (ON-TIMES) and developed it further to the Northern Europe TIMES model (TIMES-NEU).

Icon of scenario analysis


Energy Modelling Lab has probed on the future energy market that will develop under the Green Deal on climate neutrality by 2050.

Icon of report/results


Results and scenarios are collected in the report mentioned above.

Duration: 2022-2023

EML Team: Kenneth Karlsson, Ida Græsted Jensen and Andrea Marin Radoszynski

Client: COWI

Budget: DKK 450,00

Reference: Claus C. Rebien, Vice President, Cowi

Collaborators: Brinckmann


Report: Baggrundsnotat – Analyse af efterspørgsel efter PtX produkter

Local dialogue on green transition

Energy Modelling Lab is supporting an informed local dialogue on green transition, presenting charts on future demand, feasibility of new solar panel facilities and wind farms and suggestions of how to meet the increase demand.
Energy Modelling Lab is supporting an informed local dialogue on green transition, presenting charts on future demand, feasibility of new solar panel facilities and wind farms and suggestions of how to meet the increase demand.

The demand for green electricity is set to increase sharply in the coming decades. To meet the daily needs of the citizens as well as the industries, production capacity will have to rise accordingly. But which solutions are suitable and feasible on the municipal level? During 2023, Energy Modelling Lab is participating in a series of meetings to support local dialogue on green transition.

The meetings are organized by the Danish Board of Technology. Both citizens, representatives from the local industries, and decision-makers are participating. In many places, heads of the local industries and businesses are very keen on being at the forefront of the green transition. Also, experience shows that many citizens are knowledgeable and willing to engage. Dialogue can increase the support for the changes that the green transition entails.

Planning for PtX facility

During meetings in Vordingborg Municipality, we presented charts explaining the estimated increase in the demand for green electricity. Due to the planned installation of a PtX facility on the harbor, the demand is expected to rise by more than six times by 2050.

We showed that this demand could be met by a mix of new solar power facilities, wind farms, and other green energy sources. A number of on-shore and off-shore wind farms are currently being planned. If all of them are installed, they could meet even a 12-fold rise in demand. It is expected that access to green energy will attract new industrial facilities on the harbor.

In the Municipality of Kalundborg, we also presented charts explaining the land use needed to produce 1 million MWh by different kinds of green energy production facilities. The areas needed are presented in comparison to the total area of Kalundborg:

Chart explaining the land-use needed to produce 1 MWh by different kinds of green energy production facilities. The areas needed are presented in comparison to the total area of Kalundborg

We also showed the estimated energy generated, if solar panels were installed on the roofs of all buildings larger than 500 m2: It would amount to 200.000 MWh or enough to meet 20% of the estimated demand in 2030.

A common obstacle to the installation of solar power facilities and wind farms is the lack of support by local landowners and future neighbors. Insights into the actual land use needed can help set realistic goals when planning for future energy facilities.

Project: ”Fremtidens Grønne Energi og Borgerne” (“Future Green Energy and the Citizens”)

Duration: 2023

ClientThe Danish Board of Technology

Budget: DKK 100,000

Reference: Niels-Kristian Tjelle Holm, nh@tekno.dk

EML Team: Ida Græsted Jensen and Kenneth Karlsson

Viet Nam to reach net-zero emissions

Viet Nam is making headways in planning for the energy sector and is heading to reach net-zero emissions in 2050. Viet Nam Energy Outlook Report 2021  examined possible pathways for the development of the energy sector, and it featured a trajectory to reach this target for the first time.

One major finding was that a sustainable energy system will enable self-sufficiency. Another is that wind and solar energy are cheaper long-term solutions than coal and gas. At present, coal is the leading source of power.

Energy Modelling Lab is developing the scenarios that will be used in a new energy-system model for the Energy Outlook Report 2023. The model makes it possible for decision-makers and energy and power planners to identify the most cost-effective and feasible pathways to achieve a sustainable green transition.

Building DK-BioRes


The first step is to meet with our Vietnamese partners and agree on the questions to address, relevant analyses to undertake, and scenarios to design.

Energy Modelling Lab then redesigns and updates the modelling framework. We strengthen the representation of new decarbonization technologies and integrate relevant constraints.


The core scenarios focus on the realization of the net-zero target. They allow for a comprehensive investigation of optimal solutions. The results are then reflected in recommendations for policymaking.

The process fosters a wide consensus and understanding of Viet Nam’s energy challenges and opportunities in the mid-to long term.


The Viet Nam Energy Outlook Report 2023 identifies the cost-optimized solutions that support Viet Nam’s energy system to become sustainable.

The Report allows for decision-makers to explore the system-wide implications of fulfilling targets by 2050. It also shows how Viet Nam can contribute to fulfilling the Paris Agreement on climate change.

Duration: March- December 2023

EML Team: Kenneth Karlsson, Ida Græsted Jensen &Till ben Brahim

Client: Danish Energy Agency 

Total budget: DKK 572.288

Reference: Giada Venturini, Danish Energy Agency

Collaborators: Electricity and Renewable Energy Authority (EREA, Vietnam), Hanoi University of Science and Technology, and E4SMA


Net-zero emissions in Kuwait

Energy Modelling Lab helps reaching net-zero emissions in Kuwait

Kuwait is becoming one of the hottest countries on the planet and faces profound social and ecological challenges from continued global warming and the global transition away from fossil fuels. The government has pledged to reach net-zero emissions in the oil and gas sector by 2050 and by 2060 for the whole country.

At present, oil accounts for 90 % of the national revenue and more than half of GDP and renewable energy for less than 1 % of demand. Kuwait thus needs clever and comprehensive solutions. With abundant wind and solar resources, the potential is at hand.

Energy Modelling Lab supports steps to reach net-zero emissions in Kuwait by 2060. We are developing an energy modelling framework that allows us to identify the least-cost and most feasible green energy systems. Based on these results we are able to designate pathways to integrate the new solutions across five key sectors: Energy, Industry, Agriculture, Land-Use, and Waste.

Building DK-BioRes


Energy Modelling Lab develops a database for energy and GHG emissions, build consensus on ambitions, and shortlist decarbonization options.

We develop an energy model featuring different scenarios including rapid expansion of the renewable fuel market and reduced exports.


Analyzing the different scenarios allows for informed decision-making on the optimal solutions integrated across sectors.

Socioeconomic and environmental impacts and co-benefits such as improved health are identified and considered.


Results are presented in a website format with open access and all key results are shared in Excel sheets.

Users can move between scenarios and study results like emissions and energy consumption by sector and costs.

Duration: August 2022 – June 2024

External experts from EML Mikkel Bosack Simonsen and Ida Græsted Jensen

Client: UNEP

Total budget: USD 64.920

Reference: Sarah Carmen Fiedler, associate expert, UNEP

Collaborators: SDA Sustainable Development Advisors

Model: TIMES

Low emission strategy in Jordan

Solar energy in Jordan. Energy Modelling Lab is assisting to develop a low emission strategy for Jordan.

Jordan is considered to be among the world’s most vulnerable to drought as a result of climate change. Major challenges are aridity, water scarcity, heavy reliance on fossil energy imports and rapid growth in population and urbanization.

The government is now addressing the need for a transition to a greener and more resilient economy. One important step is developing a National Long-Term Low Emission Strategy and Options Report 2050.

Energy Modelling Lab is contributing to developing a low-emission strategy in Jordan. We are creating a central modelling framework representing eight key sectors and their interconnections. By embedding baseline scenarios, we can estimate the impact of different options for decarbonization. We then create a shortlist of the least cost and most feasible options and are able to designate the optimal pathways.

Building DK-BioRes

Energy Modelling Lab shortlists decarbonization options, identifies cross-sector synergies and develops an integrated model.

The model includes a full investment catalogue for the entire energy sector and shows the economically optimal pathways through the jungle of technological solutions.

Through a series of scenarios, we can investigate the consequences of different climate scenarios and consider prioritized mitigation actions.

We also identify and consider socioeconomic and environmental impacts and co-benefits such as improved health and energy savings.

The final report proposes optimal decarbonization pathways and provides policy recommendations that are validated through workshops with key stakeholders.

The Jordanian Government will have a solid basis for a continuously informed decision process as we will build up local partner capacity to use and update the model.

Duration: August 2022 – June 2024

EML Team: Kenneth Karlsson, Mikkel Bosack Simonsen, Ida Græsted Jensen 

Client: The World Bank

Budget: DKK 679,250

Reference: Karsten Holm, Danish Energy Management

Collaborators: Danish Energy Management (DEM) and the Water, Energy and Environment

Center (WEEC) of the University of Jordan


The future of district heating

What will the future of district heating look like when wind and solar dominate the electricity market as is expected within the coming decade?

In this analysis for Dansk Fjernvarme, Energy Modelling Lab has dived into the details of the future of district heating in Denmark. We have explored where the heat will come from, and whether our energy system will get too vulnerable without the thermal powerplants.

Our results show, that the thermal power and district heating plants will close down faster than projected by the Danish Energy Agency.

Key findings

In the future district heating will primarily come from large-scale heat pumps and waste heat from PtX plants and data centers.

The thermal power and heat plants are being phased out faster than the Danish Energy Agency projects.

An energy system with a low diversity comes with an increased risk of failure.

Read the full analysis here (in Danish):

Building DK-BioRes

Energy Modelling Lab has updated the Danish TIMES model (TIMES-DK) to include 23 individual district heating areas and four aggregated areas.

Energy Modelling Lab has investigated the consequences of an upper limit in biomass used for power and heat and an upper limit in the number of PtX plants.

All results and scenarios are collected in the report above.

Duration: 2022

EML TeamMikkel Bosack Simonsen, Ida Græsted Jensen, Alexandra O’Sullivan Freltoft and Kenneth Karlsson

Client: Dansk Fjernvarme

Budget: DKK 350,000

Reference: Thorbjørn Nejsum, Head of Department, Dansk Fjernvarme


Data Center Waste Heat

In the future, Dublin will be heated by recycling thermal energy. Photo: Salim Darwiche (Wikipedia Commons)

In the Tallaght area of Dublin, there is a data center that needs cooling. At the same time, the surrounding households need heating. This is a perfect case for a mutually beneficial thermal energy network.  

It is also a perfect project for TEN21, a collaboration that Energy Modelling Lab is a partner of. In Dublin, the TEN21 toolbox has been used to support local officials on how to expand the district heating network to utilize waste heat from the data center. We have built an energy system model to find an efficient expansion strategy from a techno-economic perspective. In addition, we created a strategy for commercializing the district heating activity on a cost-recovery basis.  

All of this has been done in close dialogue with South Dublin County Council and Dublin’s Energy Agency to ensure that the work will have a real-world impact. 

The TEN21 project is assisting cities all over Europe to deliver climate-friendly thermal energy.

Sewage as part of the future heating and cooling

If you want to learn more about recycling heat from for example sewage, metros, and datacenters, then go to TEN21.eu.

This is an example of a thermal energy network. Here, waste from several sources is recycled as heating for public buildings. You can read more at TEN21.eu.
Building DK-BioRes


We developed an optimization model within the TIMES framework.

It first and foremost covers the heat and power sector in Dublin. But this model has an especially high level of detail.


Energy Modelling Lab developed a series of CO2-neutral scenarios for cooling and heating in Dublin.

In this way, we can identify the perfect fit for each district.

Duration: April 2021

Project: TEN21

Partners: South Dublin County Council, Dublin’s Energy Agency (CODEMA)

Energy Modelling Lab Contact: We participated in a research project exploring the role of fossil gas in the N Ida Græsted Jensen and Andrea Marin Radoszynski