Data Center Waste Heat

In the future, Dublin will be heated by recycling thermal energy. Photo: Salim Darwiche (Wikipedia Commons)

In the Tallaght area of Dublin, there is a data center that needs cooling. At the same time, the surrounding households need heating. This is a perfect case for a mutually beneficial thermal energy network.  

It is also a perfect project for TEN21, a collaboration that Energy Modelling Lab is a partner of. In Dublin, the TEN21 toolbox has been used to support local officials on how to expand the district heating network to utilize waste heat from the data center. We have built an energy system model to find an efficient expansion strategy from a techno-economic perspective. In addition, we created a strategy for commercializing the district heating activity on a cost-recovery basis.  

All of this has been done in close dialogue with South Dublin County Council and Dublin’s Energy Agency to ensure that the work will have a real-world impact. 

The TEN21 project is assisting cities all over Europe to deliver climate-friendly thermal energy.

Sewage as part of the future heating and cooling

If you want to learn more about recycling heat from for example sewage, metros, and datacenters, then go to TEN21.eu.

This is an example of a thermal energy network. Here, waste from several sources is recycled as heating for public buildings. You can read more at TEN21.eu.
Building DK-BioRes

MODELLING DUBLIN

We developed an optimization model within the TIMES framework.

It first and foremost covers the heat and power sector in Dublin. But this model has an especially high level of detail.

NEUTRAL SCENARIOS

Energy Modelling Lab developed a series of CO2-neutral scenarios for cooling and heating in Dublin.

In this way, we can identify the perfect fit for each district.


Duration: April 2021

Project: TEN21

Partners: South Dublin County Council, Dublin’s Energy Agency (CODEMA)

EML Team: Ida Græsted Jensen and Andrea Marin Radoszynski

A mosaic of district heating sources

The climate agenda, new technologies, and geopolitical uncertainties all affect the energy system. District heating is a hot topic, and energy planners around the world are looking to Denmark for inspiration. In the future, our homes will be heated by a mosaic of district heating sources.

The mosaic will feature excess heat from data centers, Power-to-X, or Carbon Capture plants. The heat source can also be local sewage and waste from agriculture.


We help cities and district heating providers plan for the future of district heating.

Building DK-BioRes

MODELLING
We gather information about the current heating system and the local resources when we model a district heating area. Based on that we create a local optimization module within one of our national models.

SCENARIO ANALYSIS
In a collaboration between the client and the modelling team, we identify a series of potential paths to a sustainable district heating system.

A COLLECTION OF PATHS
The investment paths are gathered in a final report, which gives the client an overview of the different options.


Energy Modelling Lab Contact: Kenneth Karlsson

Clean Nordic shipping

With a combined coastline of 43.000 km trading and traveling by sea is essential in the Nordic countries. At present, the maritime industry is facing a challenging green transition, diverting away from fossil fuels towards renewable energy sources. Probing the possibilities for clean Nordic shipping is more relevant than ever.

There are many possible paths to a sustainable Nordic shipping industry. Energy Modelling Lab is involved in the HOPE project, launched by Nordic Energy Research. The full name of the project is Hydrogen Fuel Cells Solutions in shipping in relation to other low-carbon options – a Nordic perspective.

HOPE analyses alternatives for CO2-neutral marine fuels and propulsion technologies from a Nordic point of view, by assessing the role of hydrogen and fuel cell solutions in relation to other low or zero-carbon fuel options.

SCENARIO ANALYSIS
Through a series of scenario studies, the Nordic energy model (ON-TIMES) is used to find the optimal paths to a fossil-free shipping industry.

TECHNOLOGY ASSESSMENT
The project has a special focus on hydrogen and fuel cells in relation to the other low-carbon options.


Duration: November 2021 – February 2023

EML team: Kenneth Karlsson, Andrea Marin RadoszynskiAlexandra O’Sullivan Freltoft

Partners: IVL – Svenska Miljöinstitutet

Client: Nordic Energy Research

Budget: DKK 148,000

Reference: Julie Hansson, Senior Project Manager

Model: The Open Nordic TIMES model (ON-TIMES) can be found open source in our GitHub repository.

Energy strategy in Azerbaijan

Azerbaijan means the land of fire and energy resources as natural gas simply sets the country on fire. As the country moves forward new investments in energy and infrastructure are needed.

To ensure an informed decision process Energy Modelling Lab has supported the Government of Azerbaijan in developing and implementing a long-term energy strategy. We have created a tailored energy systems model, the TIMES-AZ, using the TIMES energy modelling framework.

Building DK-BioRes

MODELLING
Energy Modelling Lab has developed and implemented a full energy model (TIMES-AZ) for Azerbaijan, connecting all relevant sectors from energy and heating to transport and industry.

SCENARIO ANALYSIS
The model is used for long-term energy systems and climate policy planning.

TRAINING
Energy Modelling Lab is supporting the Government of Azerbaijan with training in the use of the energy system model.


Duration: November 2020 – November 2021

External experts from the EML Team: Kenneth Karlsson, Mikkel Bosack Simonsen, Till ben Brahim & Andrea Marin Radoszynski

Client: Government of Azerbaijan

Consortium: Rambøll, NIRAS, Equinoccio

Reference: Angel Diez, Managing Partner, Equinoccio

Donor: The EU Commission

Budget: DKK 644,425

Model: TIMES-AZ


Climate neutral agriculture in Denmark

The Danish agricultural sector is facing the green transition and many ideas have been proposed to reach climate-neutral agriculture in Denmark by 2050. In this brief, we suggest two pathways to climate neutrality to follow the general goals of a 70% reduction in 2030 and a 100% reduction in 2050.


70% greenhouse gas reduction by 2030

100% greenhouse gas neutral by 2050

No animal feed import by 2050

Technology-optimistic or technology-independent

The first scenario is a technology-optimistic scenario, while the second scenario to a larger extent can reach the goals without technological development. In both scenarios, a large increase in the forest areas is necessary such that the forest area in 2050 is approximately double the area of today.

In the technology-optimistic scenario, the amount of farm animals can be kept at the same level as today because the biogas and pyrolysis plants can reduce part of the emissions and the forests compensate for the rest of the emissions. In the technology-independent scenario, it is necessary to reduce the amount of farm animals to reach the climate targets.

Key figures

FOREST
1.000.000 ha, roughly 23% of the Danish land mass, must be covered in forest by 2050.

The forestation should happen sooner rather than later so 160.000 – 200.000 ha should be converted into forest already by 2030.

LOW LAND AREAS
100.000 ha of carbon-rich lowland soil should be converted into natural areas by 2030.

All 178.700 ha low land soil must be converted into nature by 2050.

ANIMALS
In a technology-optimistic scenario, with a sharp increase in forest area, animal production can remain the same size as today.

In a technology-independent scenario a 15% reduction in animal production by 2030, and a 30% reduction in 2050 relative to today is necessary.

If the steep forest area does not happen, a further reduction in animal production is necessary.

Read the full analysis


The model is open-sourced

Make scenarios yourself. Download the full model used for the brief from our GitHub repository.

Duration: 2021

EML-Team: Kenneth Karlsson and Ida Græsted

Danish Bioresource Model

What is needed for the Danish agriculture and forestry to become climate neutral?
How should the limited Danish area be distributed in the future?
How can we utilize the available Danish biomass resources?

These are some of the tricky questions the Danish bio-resource model (DK-BioRes) can help answering.

If you want to create your own scenarios, the model is available open source in our GitHub repository.


Building DK-BioRes

MODELLING

Energy Modelling Lab has developed the flow-based model DK-BioRes containing all Danish biomass resources from both agriculture, forestry and aquaculture.

The model serves as a foundation for political decisions towards reaching the national climate goals.

The model can be connected to the full national energy model, DK-TIMES.

TRAINING THE USERS

A crucial part of the project is training the analysts from the Danish Energy Agency in using the DK-BioRes model.

Through the series of courses Energy Modelling Lab has been training both regular and super users.


Duration: October 2020 – June 2021

EML team: Ida Græsted Jensen & Alexandra O’Sullivan Freltoft

Client: Danish Energy Agency

Budget: DKK 490.000

Reference: Bodil Harder

Model: The Danish Bioressource Model (DK-BioRes)

Vietnam’s long-term energy strategy

The Vietnamese economy is growing, and so is the energy demand. As the country moves forward new investments in clean energy and infrastructure are highly needed.

Energy Modelling Lab supports the Vietnamese government in developing and implementing a long-term energy strategy. We have updated and expanded an advanced energy systems model for Vietnam, the TIMES-Vietnam model.

Building DK-BioRes

MODELLING
Energy Modelling Lab has further developed the transport sector in the energy systems model for Vietnam, TIMES-Vietnam.

The model connects all relevant sectors from energy and heating to transport, industry, and health.

SCENARIO ANALYSIS
The model is used for long-term energy systems and climate policy planning. The scenarios show different paths to reach the Vietnamese government’s climate targets.

REPORT
The scenario results serve as a foundation for the development of the Vietnam Energy Outlook report, showing the path ahead for the Vietnamese energy system.


Duration: 2020 – 2022

EML Team: Ida Græsted Jensen, Till ben Brahim and Kenneth Karlsson

Client: This project is part of the Framework contracts with Global Cooperation at the Danish Energy Agency

Collaborators: Ea Energy Analyses, Institute of Energy, E4SMA, Aarhus University

Model: TIMES

Nordic Clean Energy Scenarios

The project Nordic Clean Energy Scenarios aims at identifying technological solutions to a fully carbon-neutral Nordic region. It further aims at developing energy scenarios for the Nordic energy sector enabling the Nordic commitment to reach carbon neutrality.

Collaborating on finding the right solutions

NCES2020 brings together nine teams from four Nordic countries, with complementing modelling and analytical skills. Combined with the use of open-access energy system models and data, this strengthens Nordic cooperation and expertise in energy modelling.

The path to neutrality

If you are curious to know more about the results, you can find the five solution tracks here. You can also listen to the podcast, read the full report, or dive straight into the results data.

Building DK-BioRes

MODELLING
Energy Modelling Lab has developed an open-source energy model for the Nordic region (ON-TIMES).

The model covers Norway, Sweden, Denmark, Finland and Iceland.

SCENARIO ANALYSIS
The model is used to identify paths to a fully carbon-neutral Nordic region.

Find the scenario results here.

REPORT
The results are collected in the Nordic Clean Energy Scenarios report.


Duration: March 2020 – April 2021.

Project: Nordic Clean Energy Scenarios

EML Team: Kenneth Karlsson

Client: Nordic Energy Research

Budget: NOK 320.000

Reference: Kevin Johnsen, COO, Nordic Energy Research

Model: Open Nordic TIMES model (ON-TIMES)

TIMES modelling courses at SDU

Energy Modelling Lab provides TIMES modelling courses at SDU, the Southern University of Denmark. Furthermore, one of the students joined Energy Modelling Lab for an internship in the fall of 2021.

TIMES modelling course

The students get an insight into the globally used energy system modelling tool TIMES. Furthermore, the course dives into the Danish model TIMES-DK to assess the Danish energy systems.

Projects made by the students

– Modelling of battery capacity in electric vehicles
– Energy islands in the Danish area of the North Sea

Duration: 2019-2021

Contact person EML: Kenneth Karlsson and Ida Græsted

PhD-course in energy modelling

The Technical University of Denmark asked Energy Modelling Lab to help organize and run a Ph.D. course in energy modelling. The title of the course is Introduction to Balmorel.

Throughout the 3-week course, the students gained knowledge of
– Energy systems analysis and scenarios
– Mathematical optimization
– The energy systems model Balmorel

Date: August 2021

EML Team: Ida Græsted Jensen

Client: Technical University of Denmark

Collaborators: Hans Ravn, RAMLOSE EDB

Model: Balmorel